Wet and dry cough classification using cough sound characteristics and machine learning: A systematic review.
Journal:
International journal of medical informatics
PMID:
40203586
Abstract
BACKGROUND: Distinguishing between productive (wet) and non-productive (dry) cough types is important for evaluating respiratory health, assisting in differential diagnosis, and monitoring disease progression. However, assessing cough type through the perception of cough sounds in clinical settings poses challenges due to its subjectivity. Employing objective cough sound analysis holds promise for aiding diagnostic assessments and guiding the management of respiratory conditions. This systematic review aims to assess and summarize the predictive capabilities of machine learning algorithms in analyzing cough sounds to determine cough type.