Automated cell structure extraction for 3D electron microscopy by deep learning.
Journal:
Scientific reports
Published Date:
May 20, 2025
Abstract
Modeling the 3D structures of cells and tissues is crucial in biology. Sequential cross-sectional images from electron microscopy provide high-resolution intracellular structure information. The segmentation of complex cell structures remains a laborious manual task for experts, demanding time and effort. This bottleneck in analyzing biological images requires efficient and automated solutions. In this study, the deep learning-based automated segmentation of biological images was explored to enable accurate reconstruction of the 3D structures of cells and organelles. An analysis system for the cell images of Cyanidioschyzon merolae, a primitive unicellular red algae, was constructed. This system utilizes sequential cross-sectional images captured by a focused ion beam scanning electron microscope (FIB-SEM). A U-Net was adopted and training was performed to identify and segment cell organelles from single-cell images. In addition, the segment anything model (SAM) and 3D watershed algorithm were employed to extract individual 3D images of each cell from large-scale microscope images containing numerous cells. Finally, the trained U-Net was applied to segment each structure within these 3D images. Through this procedure, the creation of 3D cell models could be fully automated. The adoption of other deep learning techniques and combinations of image processing methods will also be explored to enhance the segmentation accuracy further.