Galar - a large multi-label video capsule endoscopy dataset.

Journal: Scientific data
Published Date:

Abstract

Video capsule endoscopy (VCE) is an important technology with many advantages (non-invasive, representation of small bowel), but faces many limitations as well (time-consuming analysis, short battery lifetime, and poor image quality). Artificial intelligence (AI) holds potential to address every one of these challenges, however the progression of machine learning methods is limited by the avaibility of extensive data. We propose Galar, the most comprehensive dataset of VCE to date. Galar consists of 80 videos, culminating in 3,513,539 annotated frames covering functional, anatomical, and pathological aspects and introducing a selection of 29 distinct labels. The multisystem and multicenter VCE data from two centers in Saxony (Germany), was annotated framewise and cross-validated by five annotators. The vast scope of annotation and size of Galar make the dataset a valuable resource for the use of AI models in VCE, thereby facilitating research in diagnostic methods, patient care workflow, and the development of predictive analytics in the field.

Authors

  • Maxime Le Floch
    Else Kröner Fresenius Center for Digital Health, Technische Universität Dresden (TU Dresden), Dresden, Germany. Maxime.LeFloch@ukdd.de.
  • Fabian Wolf
    Else Kröner Fresenius Center for Digital Health, Technische Universität Dresden (TU Dresden), Dresden, Germany.
  • Lucian McIntyre
    Else Kröner Fresenius Center for Digital Health, Technische Universität Dresden (TU Dresden), Dresden, Germany.
  • Christoph Weinert
    Diakonissen Krankenhaus Dresden, Gastroenterology, Dresden, Germany.
  • Albrecht Palm
    Else Kröner Fresenius Center for Digital Health, Technische Universität Dresden (TU Dresden), Dresden, Germany.
  • Konrad Volk
    Else Kröner Fresenius Center for Digital Health, Technische Universität Dresden (TU Dresden), Dresden, Germany.
  • Paul Herzog
    Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany.
  • Sophie Helene Kirk
    Else Kröner Fresenius Center for Digital Health, Technische Universität Dresden (TU Dresden), Dresden, Germany.
  • Jonas L Steinhäuser
    Else Kröner Fresenius Center for Digital Health, Technische Universität Dresden (TU Dresden), Dresden, Germany.
  • Catrein Stopp
    Else Kröner Fresenius Center for Digital Health, Technische Universität Dresden (TU Dresden), Dresden, Germany.
  • Mark Enrik Geissler
    Department of Visceral, Thoracic and Vascular Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Else Kroener Fresenius Center for Digital Health, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
  • Moritz Herzog
    Else Kröner Fresenius Center for Digital Health, Technische Universität Dresden (TU Dresden), Dresden, Germany.
  • Stefan Sulk
    Department of Medicine I, University Hospital Dresden, Technische Universität Dresden (TU Dresden), Dresden, Germany.
  • Jakob Nikolas Kather
    Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.
  • Alexander Meining
    Department of Gastroenterology, University of Würzburg, Würzburg, Germany.
  • Alexander Hann
    Department of Internal Medicine II, Interventional and Experimental Endoscopy (InExEn), University Hospital Wuerzburg, Würzburg, Germany.
  • Steffen Palm
    Medical Office for Gastroenterology and Internal Medicine, Dippoldiswalde, Germany.
  • Jochen Hampe
    Else Kröner Fresenius Center for Digital Health, Technische Universität Dresden (TU Dresden), Dresden, Germany.
  • Nora Herzog
    Else Kröner Fresenius Center for Digital Health, Technische Universität Dresden (TU Dresden), Dresden, Germany.
  • Franz Brinkmann
    Else Kröner Fresenius Center for Digital Health, Technische Universität Dresden (TU Dresden), Dresden, Germany.