Artificial intelligence revolution in drug discovery: A paradigm shift in pharmaceutical innovation.
Journal:
International journal of pharmaceutics
Published Date:
May 30, 2025
Abstract
Integrating artificial intelligence (AI) into drug discovery has revolutionized pharmaceutical innovation, addressing the challenges of traditional methods that are costly, time-consuming, and suffer from high failure rates. By utilizing machine learning (ML), deep learning (DL), and natural language processing (NLP), AI enhances various stages of drug development, including target identification, lead optimization, de novo drug design, and drug repurposing. AI tools, such as AlphaFold for protein structure prediction and AtomNet for structure-based drug design, have significantly accelerated the discovery process, improved efficiency and reduced costs. Success stories like Insilico Medicine's AI-designed molecule for idiopathic pulmonary fibrosis and BenevolentAI's identification of baricitinib for COVID-19 highlight AI's transformative potential. Additionally, AI enables the exploration of vast chemical spaces, optimization of clinical trials, and the identification of novel therapeutic targets, paving the way for precision medicine. However, challenges such as limited data accessibility, integration of diverse datasets, interpretability of AI models, and ethical concerns remain critical hurdles. Overcoming these limitations through enhanced algorithms, standardized databases, and interdisciplinary collaboration is essential. Overall, AI continues to reshape drug discovery, reducing timelines, increasing success rates, and driving the development of innovative and accessible therapies for unmet medical needs.