Accuracy, consistency, and contextual understanding of large language models in restorative dentistry and endodontics.

Journal: Journal of dentistry
Published Date:

Abstract

OBJECTIVE: This study aimed to evaluate and compare the performance of several large language models (LLMs) in the context of restorative dentistry and endodontics, focusing on their accuracy, consistency, and contextual understanding.

Authors

  • Claire Lafourcade
    UFR des Sciences Odontologiques, Université de Bordeaux, Bordeaux, France; CHU de Bordeaux, Pôle de Médecine et Chirurgie bucco-dentaire, Bordeaux, France.
  • Olivia Kérourédan
    UFR des Sciences Odontologiques, Université de Bordeaux, Bordeaux, France; CHU de Bordeaux, Pôle de Médecine et Chirurgie bucco-dentaire, Bordeaux, France; UMR 1026 BioTis INSERM, Université de Bordeaux, Bordeaux, France.
  • Benoît Ballester
    Aix Marseille Univ, INSERM, TAGC, 13009 Marseille, France.
  • Raphael Richert
    Laboratoire de Mécanique Des Contacts Et Structures, UMR 5259, CNRS/INSA, Villeurbanne, France. raphael.richert@insa-lyon.fr.