Optimizing Plant Alkaloid Biosynthesis under Drought Stress: Regulatory Mechanisms and Biotechnological Strategies.
Journal:
Journal of plant physiology
Published Date:
Aug 1, 2025
Abstract
Global climate change exacerbates drought stress, severely affecting plant growth, agricultural productivity, and the biosynthesis of secondary metabolites. Alkaloids, nitrogenous compounds with diverse biological activities, hold substantial medicinal value across various plant species. This review investigates the regulatory mechanisms through which drought stress influences alkaloid synthesis, focusing on key pathways such as abscisic acid (ABA) signaling and reactive oxygen species (ROS) responses that modulate gene expression and metabolic processes. Furthermore, we explore advanced biotechnological strategies-including genetic engineering, synthetic biology, and artificial intelligence (AI)-designed to optimizing alkaloid production under drought stress conditions. In agriculture, these strategies support the development of drought-resistant crops with enhanced alkaloid profiles, while in the pharmaceutical industry, sustainable production methods for valuable alkaloids are highlighted. The review also addresses critical challenges, such as balancing plant growth with metabolite production and ensuring field-level applicability of laboratory-developed strategies. By emphasizing interdisciplinary collaboration, this research provides comprehensive insights and practical guidance for enhancing crop resilience and maximizing alkaloid yields, thereby advancing sustainability in the medicinal plant industry.