Revisiting Euclidean alignment for transfer learning in EEG-based brain-computer interfaces.
Journal:
Journal of neural engineering
Published Date:
Jun 30, 2025
Abstract
Due to large intra-subject and inter-subject variabilities of electroencephalogram (EEG) signals, EEG-based brain-computer interfaces (BCIs) usually need subject-specific calibration to tailor the decoding algorithm for each new subject, which is time-consuming and user-unfriendly, hindering their real-world applications. Transfer learning (TL) has been extensively used to expedite the calibration, by making use of EEG data from other subjects/sessions. An important consideration in TL for EEG-based BCIs is to reduce the data distribution discrepancies among different subjects/sessions, to avoid negative transfer. Euclidean alignment (EA) was proposed in 2020 to address this challenge. Numerous experiments from 13 different BCI paradigms demonstrated its effectiveness and efficiency. This paper revisits EA, explaining its procedure and correct usage, introducing its applications and extensions, and pointing out potential new research directions. It should be very helpful to BCI researchers, especially those who are working on EEG signal decoding.