Divide-and-conquer routing for learning heterogeneous individualized capsules.
Journal:
PloS one
Published Date:
Jul 30, 2025
Abstract
Capsule Networks (CapsNets) have demonstrated an enhanced ability to capture spatial relationships and preserve hierarchical feature representations compared to Convolutional Neural Networks (CNNs). However, the dynamic routing mechanism in CapsNets introduces substantial computational costs and limits scalability. In this paper, we propose a divide-and-conquer routing algorithm that groups primary capsules, enabling the model to leverage independent feature subspaces for more precise and efficient feature learning. By partitioning the primary capsules, the initialization of coupling coefficients is aligned with the hierarchical structure of the capsules, addressing the limitations of existing initialization strategies that either disrupt feature aggregation or lead to excessively small activation values. Additionally, the grouped routing mechanism simplifies the iterative process, reducing computational overhead and improving scalability. Extensive experiments on benchmark image classification datasets demonstrate that our approach consistently outperforms the original dynamic routing algorithm as well as other state-of-the-art routing strategies, resulting in improved feature learning and classification accuracy. Our code is available at: https://github.com/rqfzpy/DC-CapsNet.