A bearing fault diagnosis method based on hybrid artificial intelligence models.

Journal: PloS one
Published Date:

Abstract

The working state of rolling bearing severely affects the performance of industrial equipment. Addressing the issue of that the difficulty of incipient weak signals feature extraction influences the rolling bearing diagnosis accuracy, an efficient bearing fault diagnostic technique, a proposition is forwarded for hybrid artificial intelligence models, which integrates Improved Harris Hawks Optimization (IHHO) into the optimization of Deep Belief Networks and Extreme Learning Machines (DBN-ELM). The process employs Maximum Second-order Cyclostationary Blind Deconvolution (CYCBD) to filter out noise from the vibration signals emitted by bearings; secondly, considering the issue with the conventional Harris Hawks Optimization (HHO) algorithm which tends to prematurely converge to local optima, the differential evolution mutation operator is introduced and the escape energy factor is improved from linear to nonlinear in IHHO; then, a double-layer network model based on DBN-ELM is proposed, to avoid the number of hidden layer nodes of DBN from human experience interference, and IHHO is used to optimize DBN structure, which is denoted as IHHO-DBN-ELM method; with the optimal structure is obtained by using a combined IHHO optimized DBN and ELM; in conclusion, the proposed IHHO-DBN-ELM approach is applied to the bearing fault detection using the Western Reserve University's bearing fault dataset. The outcome of the experiments demonstrates that IHHO-DBN-ELM technique successfully extracts fault characteristics from the raw time-domain signals, thereby offering enhanced diagnostic accuracy and superior generalization capabilities.

Authors

  • Lijie Sun
    School of Art and Design, Taizhou University, Taizhou, Zhejiang, China.
  • Xin Tao
  • Yanping Lu
    School of Information, Liaoning University, Shenyang, Liaoning, China.