Artificial intelligence with feature fusion empowered enhanced brain stroke detection and classification for disabled persons using biomedical images.

Journal: Scientific reports
Published Date:

Abstract

Brain stroke is an illness which affects almost every age group, particularly people over 65. There are two significant kinds of strokes: ischemic and hemorrhagic strokes. Blockage of brain vessels causes an ischemic stroke, while cracks in blood vessels in or around the brain cause a hemorrhagic stroke. In the prompt analysis of brain stroke, patients can live an easier life. Recognizing strokes using medical imaging is crucial for early diagnosis and treatment planning. Conversely, access to innovative imaging methods is restricted, particularly in emerging states, so it is challenging to analyze brain stroke cases of disabled people appropriately. Hence, the development of more accurate, faster, and more reliable diagnostic models for the timely recognition and efficient treatment of ischemic stroke is greatly needed. Artificial intelligence technologies, primarily deep learning (DL), have been widely employed in medical imaging, utilizing automated detection methods. This paper presents an Enhanced Brain Stroke Detection and Classification using Artificial Intelligence with Feature Fusion Technologies (EBSDC-AIFFT) model. This paper aims to develop an enhanced brain stroke detection system for individuals with disabilities, utilizing biomedical images to improve diagnostic accuracy. Initially, the image pre-processing stage involves various steps, including resizing, normalization, data augmentation, and data splitting, to enhance image quality. In addition, the EBSDC-AIFFT model combines the Inception-ResNet-v2 model, the convolutional block attention module-ResNet18 method, and the multi-axis vision transformer technique for feature extraction. Finally, the variational autoencoder (VAE) model is implemented for the classification process. The performance validation of the EBSDC-AIFFT technique is performed under the brain stroke CT image dataset. The comparison study of the EBSDC-AIFFT technique demonstrated a superior accuracy value of 99.09% over existing models.

Authors

  • Mohammed Alsieni
    Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
  • Khaled H Alyoubi
    Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Computer Science, College of Computers and Information Systems, Umm Al-Qura University, Makkah, Saudi Arabia. Electronic address: kalyoubi@kau.edu.sa.