Robust muscle activity onset detection using an unsupervised electromyogram learning framework.
Journal:
PloS one
Published Date:
Jun 3, 2015
Abstract
Accurate muscle activity onset detection is an essential prerequisite for many applications of surface electromyogram (EMG). This study presents an unsupervised EMG learning framework based on a sequential Gaussian mixture model (GMM) to detect muscle activity onsets. The distribution of the logarithmic power of EMG signal was characterized by a two-component GMM in each frequency band, in which the two components respectively correspond to the posterior distribution of EMG burst and non-burst logarithmic powers. The parameter set of the GMM was sequentially estimated based on maximum likelihood, subject to constraints derived from the relationship between EMG burst and non-burst distributions. An optimal threshold for EMG burst/non-burst classification was determined using the GMM at each frequency band, and the final decision was obtained by a voting procedure. The proposed novel framework was applied to simulated and experimental surface EMG signals for muscle activity onset detection. Compared with conventional approaches, it demonstrated robust performance for low and changing signal to noise ratios in a dynamic environment. The framework is applicable for real-time implementation, and does not require the assumption of non EMG burst in the initial stage. Such features facilitate its practical application.