Artificial intelligence (AI) systems for interpreting complex medical datasets.
Journal:
Clinical pharmacology and therapeutics
Published Date:
Mar 17, 2017
Abstract
Advances in machine intelligence have created powerful capabilities in algorithms that find hidden patterns in data, classify objects based on their measured characteristics, and associate similar patients/diseases/drugs based on common features. However, artificial intelligence (AI) applications in medical data have several technical challenges: complex and heterogeneous datasets, noisy medical datasets, and explaining their output to users. There are also social challenges related to intellectual property, data provenance, regulatory issues, economics, and liability.