Learning through ferroelectric domain dynamics in solid-state synapses.

Journal: Nature communications
Published Date:

Abstract

In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.

Authors

  • Sören Boyn
    Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France.
  • Julie Grollier
    Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France.
  • Gwendal Lecerf
    University of Bordeaux, IMS, UMR 5218, Talence F-33405, France.
  • Bin Xu
    Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
  • Nicolas Locatelli
  • Stéphane Fusil
    Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France.
  • Stéphanie Girod
    Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France.
  • Cécile Carrétéro
    Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France.
  • Karin Garcia
    Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France.
  • Stéphane Xavier
    Thales Research and Technology, 1 Avenue Augustin Fresnel, Campus de I'Ecole Polytechnique, Palaiseau 91767, France.
  • Jean Tomas
    University of Bordeaux, IMS, UMR 5218, Talence F-33405, France.
  • Laurent Bellaiche
    Department of Physics and Institute for Nanoscience and Engineering, University of Arkansas Fayetteville, Arkansas 72701, USA.
  • Manuel Bibes
    Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France.
  • Agnès Barthélémy
    Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France.
  • Sylvain Saïghi
    University of Bordeaux, IMS, UMR 5218, Talence F-33405, France.
  • Vincent Garcia
    Unité Mixte de Physique, CNRS, Thales, Univ. Paris Sud, Université Paris-Saclay, Palaiseau 91767, France.