A Master-Slave control system with workspaces isomerism for teleoperation of a snake robot.
Journal:
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Published Date:
Jul 1, 2017
Abstract
Snake robots can be used to assist experts during surgical operations on internal organs via natural orifices. However, real-time control of such robot in Mater Slave (MS) teleoperation is a major challenge. Inverse kinematics solution of snake robots has being a key challenge towards real time control especially if the robot is hyper-redundant. This paper proposes a method that can achieve fast and precise inverse kinematics solution for real time control MS teleoperation. Monte Carlo method is applied to determine possible positions needed to reach a given target point, while best position is chosen based on the optimization algorithm. For workspace isomerism, the proposed method automatically determines appropriate kinematics mapping for the robots. Experimental results show that the method can achieve accurate position tracking in MS teleoperation.