Stochastic separation theorems.
Journal:
Neural networks : the official journal of the International Neural Network Society
Published Date:
Jul 31, 2017
Abstract
The problem of non-iterative one-shot and non-destructive correction of unavoidable mistakes arises in all Artificial Intelligence applications in the real world. Its solution requires robust separation of samples with errors from samples where the system works properly. We demonstrate that in (moderately) high dimension this separation could be achieved with probability close to one by linear discriminants. Based on fundamental properties of measure concentration, we show that for M1-ϑ, where 1>ϑ>0 is a given small constant. Exact values of a,b>0 depend on the probability distribution that determines how the random M-element sets are drawn, and on the constant ϑ. These stochastic separation theorems provide a new instrument for the development, analysis, and assessment of machine learning methods and algorithms in high dimension. Theoretical statements are illustrated with numerical examples.