A deep belief network with PLSR for nonlinear system modeling.

Journal: Neural networks : the official journal of the International Neural Network Society
Published Date:

Abstract

Nonlinear system modeling plays an important role in practical engineering, and deep learning-based deep belief network (DBN) is now popular in nonlinear system modeling and identification because of the strong learning ability. However, the existing weights optimization for DBN is based on gradient, which always leads to a local optimum and a poor training result. In this paper, a DBN with partial least square regression (PLSR-DBN) is proposed for nonlinear system modeling, which focuses on the problem of weights optimization for DBN using PLSR. Firstly, unsupervised contrastive divergence (CD) algorithm is used in weights initialization. Secondly, initial weights derived from CD algorithm are optimized through layer-by-layer PLSR modeling from top layer to bottom layer. Instead of gradient method, PLSR-DBN can determine the optimal weights using several PLSR models, so that a better performance of PLSR-DBN is achieved. Then, the analysis of convergence is theoretically given to guarantee the effectiveness of the proposed PLSR-DBN model. Finally, the proposed PLSR-DBN is tested on two benchmark nonlinear systems and an actual wastewater treatment system as well as a handwritten digit recognition (nonlinear mapping and modeling) with high-dimension input data. The experiment results show that the proposed PLSR-DBN has better performances of time and accuracy on nonlinear system modeling than that of other methods.

Authors

  • Junfei Qiao
  • Gongming Wang
    Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China. Electronic address: xiaowangqsd@163.com.
  • Wenjing Li
    Department of Allergy, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
  • Xiaoli Li
    State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.