Endoscopic Image Classification and Retrieval using Clustered Convolutional Features.

Journal: Journal of medical systems
Published Date:

Abstract

With the growing use of minimally invasive surgical procedures, endoscopic video archives are growing at a rapid pace. Efficient access to relevant content in such huge multimedia archives require compact and discriminative visual features for indexing and matching. In this paper, we present an effective method to represent images using salient convolutional features. Convolutional kernels from the first layer of a pre-trained convolutional neural network (CNN) are analyzed and clustered into multiple distinct groups, based on their sensitivity to colors and textures. Dominant features detected by each cluster are collected into a single, layout-preserving feature map using a spatial maximal activator pooling (SMAP) approach. A moving window based structured pooling method then captures spatial layout features and global shape information from the aggregated feature map to populate feature histograms. Finally, individual histograms for each cluster are combined into a single comprehensive feature histogram. Clustering convolutional feature space allow extraction of color and texture features of varying strengths. Further, the SMAP approach enable us to select dominant discriminative features. The proposed features are compact and capable of conveniently outperforming several existing features extraction approaches in retrieval and classification tasks on endoscopy images dataset.

Authors

  • Jamil Ahmad
    College of Software and Convergence Technology, Department of Software, Sejong University, Seoul, Republic of Korea.
  • Khan Muhammad
    Visual Analytics for Knowledge Laboratory (VIS2KNOW Lab), School of Convergence, College of Computing and Informatics, Sungkyunkwan University, Seoul, South Korea.
  • Mi Young Lee
    Digital Contents Research Institute, Sejong University, Seoul, Republic of Korea.
  • Sung Wook Baik
    College of Software and Convergence Technology, Department of Software, Sejong University, Seoul, Republic of Korea.