Prediction of delayed retention of antibodies in hydrophobic interaction chromatography from sequence using machine learning.
Journal:
Bioinformatics (Oxford, England)
PMID:
28961999
Abstract
MOTIVATION: The hydrophobicity of a monoclonal antibody is an important biophysical property relevant for its developability into a therapeutic. In addition to characterizing heterogeneity, Hydrophobic Interaction Chromatography (HIC) is an assay that is often used to quantify the hydrophobicity of an antibody to assess downstream risks. Earlier studies have shown that retention times in this assay can be correlated to amino-acid or atomic propensities weighted by the surface areas obtained from protein 3-dimensional structures. The goal of this study is to develop models to enable prediction of delayed HIC retention times directly from sequence.