Sleep in patients with disorders of consciousness characterized by means of machine learning.

Journal: PloS one
PMID:

Abstract

Sleep has been proposed to indicate preserved residual brain functioning in patients suffering from disorders of consciousness (DOC) after awakening from coma. However, a reliable characterization of sleep patterns in this clinical population continues to be challenging given severely altered brain oscillations, frequent and extended artifacts in clinical recordings and the absence of established staging criteria. In the present study, we try to address these issues and investigate the usefulness of a multivariate machine learning technique based on permutation entropy, a complexity measure. Specifically, we used long-term polysomnography (PSG), along with video recordings in day and night periods in a sample of 23 DOC; 12 patients were diagnosed as Unresponsive Wakefulness Syndrome (UWS) and 11 were diagnosed as Minimally Conscious State (MCS). Eight hour PSG recordings of healthy sleepers (N = 26) were additionally used for training and setting parameters of supervised and unsupervised model, respectively. In DOC, the supervised classification (wake, N1, N2, N3 or REM) was validated using simultaneous videos which identified periods with prolonged eye opening or eye closure.The supervised classification revealed that out of the 23 subjects, 11 patients (5 MCS and 6 UWS) yielded highly accurate classification with an average F1-score of 0.87 representing high overlap between the classifier predicting sleep (i.e. one of the 4 sleep stages) and closed eyes. Furthermore, the unsupervised approach revealed a more complex pattern of sleep-wake stages during the night period in the MCS group, as evidenced by the presence of several distinct clusters. In contrast, in UWS patients no such clustering was found. Altogether, we present a novel data-driven method, based on machine learning that can be used to gain new and unambiguous insights into sleep organization and residual brain functioning of patients with DOC.

Authors

  • Tomasz Wielek
    Laboratory for Sleep, Cognition and Consciousness, & Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria.
  • Julia Lechinger
    Laboratory for Sleep, Cognition and Consciousness, & Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria.
  • Malgorzata Wislowska
    Laboratory for Sleep, Cognition and Consciousness, & Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria.
  • Christine Blume
    Laboratory for Sleep, Cognition and Consciousness, & Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria.
  • Peter Ott
    ITS Informationstechnik & System-Management, Salzburg University of Applied Sciences, Salzburg, Austria.
  • Stefan Wegenkittl
    ITS Informationstechnik & System-Management, Salzburg University of Applied Sciences, Salzburg, Austria.
  • Renata Del Giudice
    Laboratory for Sleep, Cognition and Consciousness, & Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria.
  • Dominik P J Heib
    Laboratory for Sleep, Cognition and Consciousness, & Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria.
  • Helmut A Mayer
    Department of Computer Sciences, University of Salzburg, Salzburg, Austria.
  • Steven Laureys
    Coma Science Group, University Hospital of Liege, Liege, Belgium.
  • Gerald Pichler
    Apallic Care Unit, Neurological Division, Albert Schweitzer Hospital Graz, Graz, Austria.
  • Manuel Schabus
    Laboratory for Sleep, Cognition and Consciousness, & Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria.