Ω-Net (Omega-Net): Fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks.

Journal: Medical image analysis
Published Date:

Abstract

Pixelwise segmentation of the left ventricular (LV) myocardium and the four cardiac chambers in 2-D steady state free precession (SSFP) cine sequences is an essential preprocessing step for a wide range of analyses. Variability in contrast, appearance, orientation, and placement of the heart between patients, clinical views, scanners, and protocols makes fully automatic semantic segmentation a notoriously difficult problem. Here, we present Ω-Net (Omega-Net): A novel convolutional neural network (CNN) architecture for simultaneous localization, transformation into a canonical orientation, and semantic segmentation. First, an initial segmentation is performed on the input image; second, the features learned during this initial segmentation are used to predict the parameters needed to transform the input image into a canonical orientation; and third, a final segmentation is performed on the transformed image. In this work, Ω-Nets of varying depths were trained to detect five foreground classes in any of three clinical views (short axis, SA; four-chamber, 4C; two-chamber, 2C), without prior knowledge of the view being segmented. This constitutes a substantially more challenging problem compared with prior work. The architecture was trained using three-fold cross-validation on a cohort of patients with hypertrophic cardiomyopathy (HCM, N=42) and healthy control subjects (N=21). Network performance, as measured by weighted foreground intersection-over-union (IoU), was substantially improved for the best-performing Ω-Net compared with U-Net segmentation without localization or orientation (0.858 vs 0.834). In addition, to be comparable with other works, Ω-Net was retrained from scratch using five-fold cross-validation on the publicly available 2017 MICCAI Automated Cardiac Diagnosis Challenge (ACDC) dataset. The Ω-Net outperformed the state-of-the-art method in segmentation of the LV and RV bloodpools, and performed slightly worse in segmentation of the LV myocardium. We conclude that this architecture represents a substantive advancement over prior approaches, with implications for biomedical image segmentation more generally.

Authors

  • Davis M Vigneault
    Institute of Biomedical Engineering, Department of Engineering, University of Oxford, United Kingdom; Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, USA; Tufts University School of Medicine, Sackler School of Graduate Biomedical Sciences, USA. Electronic address: davis.vigneault@gmail.com.
  • Weidi Xie
    Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, United Kingdom; Visual Geometry Group, Department of Engineering Science, University of Oxford, United Kingdom. Electronic address: weidi.xie@eng.ox.ac.uk.
  • Carolyn Y Ho
    Cardiovascular Division, Brigham and Women's Hospital, USA.
  • David A Bluemke
    From the Department of Radiology (B.A.-V.), Bloomberg School of Public Health (E.G.), and Department of Medicine, Cardiology and Radiology (J.A.C.L.), Johns Hopkins University, Baltimore, MD; George Washington University, DC (X.Y.); Office of Biostatistics, NHLBI, NIH, Bethesda, MD (C.O.W.); Department of Preventive Medicine, Northwestern University Medical School, Chicago, IL (K.L.); Department of Cardiology, Wake Forest University Health Sciences, Winston-Salem, NC (W.G.H.); Department of Biostatistics, University of Washington, Seattle (R.M.); Department of Radiology, UCLA School of Medicine, Los Angeles, CA (A.S.G.); Division of Epidemiology and Community Health, University of Minnesota, Minneapolis (A.R.F.); Departments of Medicine and Epidemiology, Columbia University, New York, NY (S.S.); and Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD (D.A.B.).
  • J Alison Noble
    Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, England, UK.