Improving resolution of MR images with an adversarial network incorporating images with different contrast.

Journal: Medical physics
Published Date:

Abstract

PURPOSE: The routine MRI scan protocol consists of multiple pulse sequences that acquire images of varying contrast. Since high frequency contents such as edges are not significantly affected by image contrast, down-sampled images in one contrast may be improved by high resolution (HR) images acquired in another contrast, reducing the total scan time. In this study, we propose a new deep learning framework that uses HR MR images in one contrast to generate HR MR images from highly down-sampled MR images in another contrast.

Authors

  • Ki Hwan Kim
    Department of Radiology, Seoul National College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea (H.C., S.H.Y., S.J.P., C.M.P., J.H.L., H. Kim, E.J.H., S.J.Y., J.G.N., C.H.L., J.M.G.); CHESS Center, The First Hospital of Lanzhou University, Lanzhou, China (Q.X., J.L.); Department of Radiology, Seoul National University Bundang Hospital, Gyeonggi-do, Korea (K.H.L.); Department of Internal Medicine, Incheon Medical Center, Incheon, Korea (J.Y.K.); Department of Radiology, Seoul Medical Center, Seoul, Korea (Y.K.L.); Department of Radiology, National Medical Center, Seoul, Korea (H. Ko); Department of Radiology, Myongji Hospital, Gyeonggi-do, Korea (K.H.K.); and Department of Radiology, Chonnam National University Hospital, Gwanju, Korea (Y.H.K.).
  • Won-Joon Do
    Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
  • Sung-Hong Park
    From the Graduate School of Medical Science and Engineering (K.H.K., S.H.P.) and Department of Bio and Brain Engineering (S.H.P.), Korea Advanced Institute of Science and Technology, Room 1002, CMS (E16) Building, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea (S.H.C.); Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea (S.H.C.); and Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea (S.H.C.).