Chemical-induced disease extraction via recurrent piecewise convolutional neural networks.
Journal:
BMC medical informatics and decision making
Published Date:
Jul 23, 2018
Abstract
BACKGROUND: Extracting relationships between chemicals and diseases from unstructured literature have attracted plenty of attention since the relationships are very useful for a large number of biomedical applications such as drug repositioning and pharmacovigilance. A number of machine learning methods have been proposed for chemical-induced disease (CID) extraction due to some publicly available annotated corpora. Most of them suffer from time-consuming feature engineering except deep learning methods. In this paper, we propose a novel document-level deep learning method, called recurrent piecewise convolutional neural networks (RPCNN), for CID extraction.