Passivity analysis of delayed reaction-diffusion memristor-based neural networks.

Journal: Neural networks : the official journal of the International Neural Network Society
Published Date:

Abstract

This paper discusses the passivity of delayed reaction-diffusion memristor-based neural networks (RDMNNs). By exploiting inequality techniques and by constructing appropriate Lyapunov functional, several sufficient conditions are obtained in the form of linear matrix inequalities (LMIs), which can be used to ascertain the passivity, output and input strict passivity of delayed RDMNNs. In addition, the passivity of RDMNNs without any delay is also considered. These conditions, represented by LMIs, can be easily verified by virtue of the Matlab toolbox. Finally, some illustrative examples are provided to substantiate the effectiveness and validity of the theoretical results, and to present an application of RDMNN in pseudo-random number generation.

Authors

  • Yanyi Cao
    School of Automation, Huazhong University of Science and Technology, Wuhan, PR China.
  • Yuting Cao
    School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China.
  • Shiping Wen
  • Tingwen Huang
  • Zhigang Zeng