A Convenient Non-harm Cervical Spondylosis Intelligent Identity method based on Machine Learning.

Journal: Scientific reports
Published Date:

Abstract

Cervical spondylosis (CS), a most common orthopedic diseases, is mainly identified by the doctor's judgment from the clinical symptoms and cervical change provided by expensive instruments in hospital. Owing to the development of the surface electromyography (sEMG) technique and artificial intelligence, we proposed a convenient non-harm CS intelligent identify method EasiCNCSII, including the sEMG data acquisition and the CS identification. Faced with the limit testable muscles, the data acquisition method are proposed to conveniently and effectively collect data based on the tendons theory and CS etiology. Faced with high-dimension and the weak availability of the data, the 3-tier model EasiAI is developed to intelligently identify CS. The common features and new features are extracted from raw sEMG data in first tier. The EasiRF is proposed in second tier to further reduce the data dimension, improving the performance. A classification model based on gradient boosted regression tree is developed in third tier to identify CS. Compared with 4 common machine learning classification models, the EasiCNCSII achieves best performance of 91.02% in mean accuracy, 97.14% in mean sensitivity, 81.43% in mean specificity, 0.95 in mean AUC.

Authors

  • Nana Wang
    Institute of Computing Technology(ICT), Chinese Academy of Sciences(CAS), Beijing, China.
  • Xi Huang
    Institute of Computing Technology(ICT), Chinese Academy of Sciences(CAS), Beijing, China.
  • Yi Rao
    State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Hubei Key Laboratory of Industrial Biotechnology, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, College of Life Sciences, Hubei University, Wuhan, 430062, China.
  • Jing Xiao
    Xiyuan Hospital, China Academy of Chinese Medical Sciences(CACMS), Beijing, China.
  • Jiahui Lu
    Institute of Computing Technology(ICT), Chinese Academy of Sciences(CAS), Beijing, China.
  • Nian Wang
    Institute of Computing Technology(ICT), Chinese Academy of Sciences(CAS), Beijing, China.
  • Li Cui
    Institute of Computing Technology(ICT), Chinese Academy of Sciences(CAS), Beijing, China. lcui@ict.ac.cn.