Intraspectrum Discrimination and Interspectrum Correlation Analysis Deep Network for Multispectral Face Recognition.

Journal: IEEE transactions on cybernetics
Published Date:

Abstract

Multispectral images contain rich recognition information since the multispectral camera can reveal information that is not visible to the human eye or to the conventional RGB camera. Due to this characteristic of multispectral images, multispectral face recognition has attracted lots of research interest. Although some multispectral face recognition methods have been presented in the last decade, how to fully and effectively explore the intraspectrum discriminant information and the useful interspectrum correlation information in multispectral face images for recognition has not been well studied. To boost the performance of multispectral face recognition, we propose an intraspectrum discrimination and interspectrum correlation analysis deep network (IDICN) approach. Multiple spectra are divided into several spectrum-sets, with each containing a group of spectra within a small spectral range. The IDICN network contains a set of spectrum-set-specific deep convolutional neural networks attempting to extract spectrum-set-specific features, followed by a spectrum pooling layer, whose target is to select a group of spectra with favorable discriminative abilities adaptively. IDICN jointly learns the nonlinear representations of the selected spectra, such that the intraspectrum Fisher loss and the interspectrum discriminant correlation are minimized. Experiments on the well-known Hong Kong Polytechnic University, Carnegie Mellon University, and the University of Western Australia multispectral face datasets demonstrate the superior performance of the proposed approach over several state-of-the-art methods.

Authors

  • Fei Wu
    Zhejiang University, 38 Zheda Road, Hangzhou 310058, Zhejiang, China.
  • Xiao-Yuan Jing
  • Xiwei Dong
  • Ruimin Hu
  • Dong Yue
  • Lina Wang
    Department of Biochemistry and Molecular Biology, Shandong University School of MedicineJinan, P. R. China; Central Laboratory, The Second Hospital of Shandong UniversityJinan, P. R. China.
  • Yi-Mu Ji
  • Ruchuan Wang
  • Guoliang Chen