Recent Advances in Machine Learning Methods for Predicting Heat Shock Proteins.
Journal:
Current drug metabolism
PMID:
30378494
Abstract
BACKGROUND: As molecular chaperones, Heat Shock Proteins (HSPs) not only play key roles in protein folding and maintaining protein stabilities, but are also linked with multiple kinds of diseases. Therefore, HSPs have been regarded as the focus of drug design. Since HSPs from different families play distinct functions, accurately classifying the families of HSPs is the key step to clearly understand their biological functions. In contrast to laborintensive and cost-ineffective experimental methods, computational classification of HSP families has emerged to be an alternative approach.