Machine learning models based on the dimensionality reduction of standard automated perimetry data for glaucoma diagnosis.
Journal:
Artificial intelligence in medicine
Published Date:
Feb 25, 2019
Abstract
INTRODUCTION: Visual field testing via standard automated perimetry (SAP) is a commonly used glaucoma diagnosis method. Applying machine learning techniques to the visual field test results, a valid clinical diagnosis of glaucoma solely based on the SAP data is provided. In order to reflect structural-functional patterns of glaucoma on the automated diagnostic models, we propose composite variables derived from anatomically grouped visual field clusters to improve the prediction performance. A set of machine learning-based diagnostic models are designed that implement different input data manipulation, dimensionality reduction, and classification methods.