Fast learning of fiber orientation distribution function for MR tractography using convolutional neural network.
Journal:
Medical physics
Published Date:
May 11, 2019
Abstract
PURPOSE: In diffusion-weighted magnetic resonance imaging (DW-MRI), the fiber orientation distribution function (fODF) is of great importance for solving complex fiber configurations to achieve reliable tractography throughout the brain, which ultimately facilitates the understanding of brain connectivity and exploration of neurological dysfunction. Recently, multi-shell multi-tissue constrained spherical deconvolution (MSMT-CSD) method has been explored for reconstructing full fODFs. To achieve a reliable fitting, similar to other model-based approaches, a large number of diffusion measurements is typically required for MSMT-CSD method. The prolonged acquisition is, however, not feasible in practical clinical routine and is prone to motion artifacts. To accelerate the acquisition, we proposed a method to reconstruct the fODF from downsampled diffusion-weighted images (DWIs) by leveraging the strong inference ability of the deep convolutional neural network (CNN).