A visual encoding model based on deep neural networks and transfer learning for brain activity measured by functional magnetic resonance imaging.
Journal:
Journal of neuroscience methods
Published Date:
Sep 1, 2019
Abstract
BACKGROUND: Building visual encoding models to accurately predict visual responses is a central challenge for current vision-based brain-machine interface techniques. To achieve high prediction accuracy on neural signals, visual encoding models should include precise visual features and appropriate prediction algorithms. Most existing visual encoding models employ hand-craft visual features (e.g., Gabor wavelets or semantic labels) or data-driven features (e.g., features extracted from deep neural networks (DNN)). They also assume a linear mapping between feature representations to brain activity. However, it remains unknown whether such linear mapping is sufficient for maximizing prediction accuracy.