Deep Learning Based Patient-Specific Classification of Arrhythmia on ECG signal.

Journal: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Published Date:

Abstract

The classification of the heartbeat type is an essential function in the automatical electrocardiogram (ECG) analysis algorithm. The guideline of the ANSI/AAMI EC57 defined five types of heartbeat: non-ectopic or paced beat (N), supraventricular ectopic beat (S), ventricular ectopic beat (V), fusion of a ventricular and normal beat (F), pace beat or fusion of a paced and a normal or beat that cannot be classified (Q). In the work, a deep neural network based method was proposed to classify these five types of heartbeat. After removing the noise from ECG signals by a low-pass filter, the two-lead heartbeat segments with 2-s length were generated on the filtered signals, and classified by an adaptive ResNet model. The proposed method was evaluated on the MIT-BIH Arrhythmia Database with the patient-specific pattern. The overall accuracy was 98.6% and sensitivity of N, S, V, F were 99.4%, 85.4%, 96.6%, 90.6% respectively. Experimental results show that the proposed method achieved a good performance, and would be useful in the clinic practice.

Authors

  • Wei Zhao
    Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu Province, P. R. China. lxy@jiangnan.edu.cn zhuye@jiangnan.edu.cn.
  • Jing Hu
    College of Chemistry, Sichuan University Chengdu 610064 People's Republic of China xmpuscu@scu.edu.cn +86 028 8541 2290.
  • Dongya Jia
  • Hongmei Wang
  • Zhenqi Li
  • Cong Yan
    School of Life Science, Beijing University of Chinese Medicine, Beijing 102488, China.
  • Tianyuan You