Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation.

Journal: The journal of physical chemistry letters
Published Date:

Abstract

We propose a simple, but efficient and accurate, machine learning (ML) model for developing a high-dimensional potential energy surface. This so-called embedded atom neural network (EANN) approach is inspired by the well-known empirical embedded atom method (EAM) model used in the condensed phase. It simply replaces the scalar embedded atom density in EAM with a Gaussian-type orbital based density vector and represents the complex relationship between the embedded density vector and atomic energy by neural networks. We demonstrate that the EANN approach is equally accurate as several established ML models in representing both big molecular and extended periodic systems, yet with much fewer parameters and configurations. It is highly efficient as it implicitly contains the three-body information without an explicit sum of the conventional costly angular descriptors. With high accuracy and efficiency, EANN potentials can vastly accelerate molecular dynamics and spectroscopic simulations in complex systems at ab initio level.

Authors

  • Yaolong Zhang
    Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Ce Hu
    Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China.
  • Bin Jiang
    Department of Urology, Chinese People's Liberation Army General Hospital, Beijing, 100039 China.