Utilizing Machine Learning for Efficient Parameterization of Coarse Grained Molecular Force Fields.

Journal: Journal of chemical information and modeling
Published Date:

Abstract

We present a machine learning approach to automated force field development in dissipative particle dynamics (DPD). The approach employs Bayesian optimization to parametrize a DPD force field against experimentally determined partition coefficients. The optimization process covers a discrete space of over 40 000 000 points, where each point represents the set of potentials that jointly forms a force field. We find that Bayesian optimization is capable of reaching a force field of comparable performance to the current state-of-the-art within 40 iterations. The best iteration during the optimization achieves an of 0.78 and an RMSE of 0.63 log units on the training set of data, these metrics are maintained when a validation set is included, giving of 0.8 and an RMSE of 0.65 log units. This work hence provides a proof-of-concept, expounding the utility of coupling automated and efficient global optimization with a top down data driven approach to force field parametrization. Compared to commonly employed alternative methods, Bayesian optimization offers global parameter searching and a low time to solution.

Authors

  • James L McDonagh
    IBM Research U.K. , Hartree Centre, Daresbury WA4 4AD , United Kingdom.
  • Ardita Shkurti
    STFC Daresbury Laboratories , Daresbury WA4 4AD , United Kingdom.
  • David J Bray
    STFC Daresbury Laboratories , Daresbury WA4 4AD , United Kingdom.
  • Richard L Anderson
    STFC Daresbury Laboratories , Daresbury WA4 4AD , United Kingdom.
  • Edward O Pyzer-Knapp
    IBM Research U.K. , Hartree Centre, Daresbury WA4 4AD , United Kingdom.