Learning Sparse and Identity-Preserved Hidden Attributes for Person Re-Identification.

Journal: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Published Date:

Abstract

Person re-identification (Re-ID) aims at matching person images captured in non-overlapping camera views. To represent person appearance, low-level visual features are sensitive to environmental changes, while high-level semantic attributes, such as "short-hair" or "long-hair", are relatively stable. Hence, researches have started to design semantic attributes to reduce the visual ambiguity. However, to train a prediction model for semantic attributes, it requires plenty of annotations, which are hard to obtain in practical large-scale applications. To alleviate the reliance on annotation efforts, we propose to incrementally generate Deep Hidden Attribute (DHA) based on baseline deep network for newly uncovered annotations. In particular, we propose an auto-encoder model that can be plugged into any deep network to mine latent information in an unsupervised manner. To optimize the effectiveness of DHA, we reform the auto-encoder model with additional orthogonal generation module, along with identity-preserving and sparsity constraints. 1) Orthogonally generating: In order to make DHAs different from each other, Singular Vector Decomposition (SVD) is introduced to generate DHAs orthogonally. 2) Identity-preserving constraint: The generated DHAs should be distinct for telling different persons, so we associate DHAs with person identities. 3) Sparsity constraint: To enhance the discriminability of DHAs, we also introduce the sparsity constraint to restrict the number of effective DHAs for each person. Experiments conducted on public datasets have validated the effectiveness of the proposed network. On two large-scale datasets, i.e., Market-1501 and DukeMTMC-reID, the proposed method outperforms the state-of-the-art methods.

Authors

  • Zheng Wang
    Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China.
  • Junjun Jiang
    Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning 530021, Guangxi, China.
  • Yang Wu
  • Mang Ye
  • Xiang Bai
  • Shin'ichi Satoh
    Research Center for Medical Bigdata (RCMB), National Institute of Informatics, Tokyo, Japan.