evERdock BAI: Machine-learning-guided selection of protein-protein complex structure.

Journal: The Journal of chemical physics
Published Date:

Abstract

Computational techniques for accurate and efficient prediction of protein-protein complex structures are widely used for elucidating protein-protein interactions, which play important roles in biological systems. Recently, it has been reported that selecting a structure similar to the native structure among generated structure candidates (decoys) is possible by calculating binding free energies of the decoys based on all-atom molecular dynamics (MD) simulations with explicit solvent and the solution theory in the energy representation, which is called evERdock. A recent version of evERdock achieves a higher-accuracy decoy selection by introducing MD relaxation and multiple MD simulations/energy calculations; however, huge computational cost is required. In this paper, we propose an efficient decoy selection method using evERdock and the best arm identification (BAI) framework, which is one of the techniques of reinforcement learning. The BAI framework realizes an efficient selection by suppressing calculations for nonpromising decoys and preferentially calculating for the promising ones. We evaluate the performance of the proposed method for decoy selection problems of three protein-protein complex systems. Their results show that computational costs are successfully reduced by a factor of 4.05 (in the best case) compared to a standard decoy selection approach without sacrificing accuracy.

Authors

  • Kei Terayama
    Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan.
  • Ai Shinobu
    School of Life Sciences and Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
  • Koji Tsuda
    Graduate School of Frontier Sciences, The University of Tokyo Kashiwa Chiba 277-8561 Japan.
  • Kazuhiro Takemura
    School of Life Sciences and Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
  • Akio Kitao
    School of Life Sciences and Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.