Identification of exacerbation risk in patients with liver dysfunction using machine learning algorithms.

Journal: PloS one
PMID:

Abstract

The prediction of the liver failure (LF) and its proper diagnosis would lead to a reduction in the complications of the disease and prevents the progress of the disease. To improve the treatment of LF patients and reduce the cost of treatment, we build a machine learning model to forecast whether a patient would deteriorate after admission to the hospital. First, a total of 348 LF patients were included from May 2011 to March 2018 retrospectively in this study. Then, 15 key clinical indicators are selected as the input of the machine learning algorithm. Finally, machine learning and the Model for End-Stage Liver Disease (MELD) are used to forecast the LF deterioration. The area under the receiver operating characteristic (AUC) of MELD, GLMs, CART, SVM and NNET with 10 fold-cross validation was 0.670, 0.554, 0.794, 0.853 and 0.912 respectively. Additionally, the accuracy of MELD, GLMs, CART, SVM and NNET was 0.669, 0.456, 0.794, 0.853 and 0.912. The predictive performance of the developed machine model execept the GLMs exceeds the classic MELD model. The machine learning method could support the physicians to trigger the initiation of timely treatment for the LD patients.

Authors

  • Junfeng Peng
    School of Data and Computer Science, Sun Yat-sen University, Guangzhou, Guangdong, China.
  • Mi Zhou
    The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangzhou, China.
  • Chuan Chen
    Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China.
  • Xiaohua Xie
    School of Data and Computer Science, Sun Yat-sen University, Guangzhou, Guangdong, China.
  • Ching-Hsing Luo
    Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, KaoHsiung 80424, Taiwan. Electronic address: robinluo@mail.ncku.edu.tw.