Neural hierarchical models of ecological populations.

Journal: Ecology letters
Published Date:

Abstract

Neural networks are increasingly being used in science to infer hidden dynamics of natural systems from noisy observations, a task typically handled by hierarchical models in ecology. This article describes a class of hierarchical models parameterised by neural networks - neural hierarchical models. The derivation of such models analogises the relationship between regression and neural networks. A case study is developed for a neural dynamic occupancy model of North American bird populations, trained on millions of detection/non-detection time series for hundreds of species, providing insights into colonisation and extinction at a continental scale. Flexible models are increasingly needed that scale to large data and represent ecological processes. Neural hierarchical models satisfy this need, providing a bridge between deep learning and ecological modelling that combines the function representation power of neural networks with the inferential capacity of hierarchical models.

Authors

  • Maxwell B Joseph
    Earth Lab, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, 80303, USA.