HNet-DNN: Inferring New Drug-Disease Associations with Deep Neural Network Based on Heterogeneous Network Features.

Journal: Journal of chemical information and modeling
Published Date:

Abstract

Drug research and development is a time-consuming and high-cost task, pressing an urgent demand to identify novel indications of approved drugs, referred to as drug repositioning, which provides an economical and efficient way for drug discovery. With increasing volumes of large-scale chemical, genomic, and pharmacological data sets generated by the high-throughput technique, it is crucial to develop systematic and rational computational approaches to identify new indications of approved drugs. In this paper, we introduce HNet-DNN, which utilizes a deep neural network (DNN), to predict new drug-disease associations based on the features extracted from the drug-disease heterogeneous network. Instead of the straightforward concatenation of chemical and phenotypic features as the input of DNN, we used these raw features of drugs and diseases to construct a drug-drug similarity network and a disease-disease similarity network, and then built a drug-disease heterogeneous network by integrating known drug-disease associations. Subsequently, we extracted topological features for drug-disease associations from the heterogeneous network and used them to train a DNN model. Our intensive performance evaluations demonstrated that HNet-DNN effectively exploits the features of the heterogeneous network to boost the predictive performance of drug-disease associations. Compared with a couple of typical classifiers and competitive approaches, our method not only achieved state-of-the-art performance but also effectively alleviated the overfitting problem. Moreover, we ran HNet-DNN to predict new drug-disease associations and carried out case studies to verify the effectiveness of our method.

Authors

  • Hui Liu
    Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
  • Wenhao Zhang
    Aliyun School of Big Data, Changzhou University, 213164 Changzhou, China.
  • Yinglong Song
    Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, 200433 Shanghai, China.
  • Lei Deng
    1] Center for Brain Inspired Computing Research (CBICR), Department of Precision Instrument, Tsinghua University, Beijing 100084, China [2] Optical Memory National Engineering Research Center, Department of Precision Instrument, Tsinghua University, Beijing 100084, China.
  • Shuigeng Zhou