Epigenome-based splicing prediction using a recurrent neural network.

Journal: PLoS computational biology
Published Date:

Abstract

Alternative RNA splicing provides an important means to expand metazoan transcriptome diversity. Contrary to what was accepted previously, splicing is now thought to predominantly take place during transcription. Motivated by emerging data showing the physical proximity of the spliceosome to Pol II, we surveyed the effect of epigenetic context on co-transcriptional splicing. In particular, we observed that splicing factors were not necessarily enriched at exon junctions and that most epigenetic signatures had a distinctly asymmetric profile around known splice sites. Given this, we tried to build an interpretable model that mimics the physical layout of splicing regulation where the chromatin context progressively changes as the Pol II moves along the guide DNA. We used a recurrent-neural-network architecture to predict the inclusion of a spliced exon based on adjacent epigenetic signals, and we showed that distinct spatio-temporal features of these signals were key determinants of model outcome, in addition to the actual nucleotide sequence of the guide DNA strand. After the model had been trained and tested (with >80% precision-recall curve metric), we explored the derived weights of the latent factors, finding they highlight the importance of the asymmetric time-direction of chromatin context during transcription.

Authors

  • Donghoon Lee
    Department of Radiation Convergence Engineering, Research Institute of Health Science, Yonsei Univeristy, 1 Yonseidae-gil, Wonju, Gangwon, 26493, Korea.
  • Jing Zhang
    MOEMIL Laboratory, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, China.
  • Jason Liu
    Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America.
  • Mark Gerstein
    Program of Computational Biology and Bioinformatics and Department of Molecular Biophysics and Biochemistry and Department of Computer Science, Yale University, New Haven, CT 06511, USA.