DNC4mC-Deep: Identification and Analysis of DNA N4-Methylcytosine Sites Based on Different Encoding Schemes By Using Deep Learning.

Journal: Cells
Published Date:

Abstract

N4-methylcytosine as one kind of modification of DNA has a critical role which alters genetic performance such as protein interactions, conformation, stability in DNA as well as the regulation of gene expression same cell developmental and genomic imprinting. Some different 4mC site identifiers have been proposed for various species. Herein, we proposed a computational model, DNC4mC-Deep, including six encoding techniques plus a deep learning model to predict 4mC sites in the genome of , , and Cross-species dataset. It was demonstrated by the 10-fold cross-validation test to get superior performance. The DNC4mC-Deep obtained 0.829 and 0.929 of MCC on and training dataset, respectively, and 0.814 on cross-species. This means the proposed method outperforms the state-of-the-art predictors at least 0.284 and 0.265 on and training dataset in turn. Furthermore, the DNC4mC-Deep achieved 0.635 and 0.565 of MCC on and independent dataset, respectively, and 0.562 on cross-species which shows it can achieve the best performance to predict 4mC sites as compared to the state-of-the-art predictor.

Authors

  • Abdul Wahab
  • Omid Mahmoudi
    Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Korea.
  • Jeehong Kim
    medical student, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
  • Kil To Chong
    Division of Electronic Engineering, and Advanced Research Center of Electronics and Information, Chonbuk National University, Jeonju-Si 54896, South Korea. Electronic address: kitchong@jbnu.ac.kr.