Deep clustering with a Dynamic Autoencoder: From reconstruction towards centroids construction.

Journal: Neural networks : the official journal of the International Neural Network Society
Published Date:

Abstract

In unsupervised learning, there is no apparent straightforward cost function that can capture the significant factors of variations and similarities. Since natural systems have smooth dynamics, an opportunity is lost if an unsupervised objective function remains static. The absence of concrete supervision suggests that smooth dynamics should be integrated during the training process. Compared to classical static cost functions, dynamic objective functions allow to better make use of the gradual and uncertain knowledge acquired through pseudo-supervision. In this paper, we propose Dynamic Autoencoder (DynAE), a novel model for deep clustering that addresses a clustering-reconstruction trade-off, by gradually and smoothly eliminating the reconstruction objective function in favor of a construction one. Experimental evaluations on benchmark datasets show that our approach achieves state-of-the-art results compared to the most relevant deep clustering methods.

Authors

  • Nairouz Mrabah
    National Engineering School of Tunis, University of Tunis El Manar, Tunis, Tunisia. Electronic address: nairouz.mrabah@ensi-uma.tn.
  • Naimul Mefraz Khan
  • Riadh Ksantini
    Department of Computer Science, College of IT, University of Bahrain, Kingdom of Bahrain; Higher School of Communication of Tunis, University of Carthage, Tunis, Tunisia. Electronic address: rksantini@uob.edu.bh.
  • Zied Lachiri
    SITI Laboratory, National School of Engineers of Tunis (ENIT), University Tunis El Manar, BP 37, le Belvédère, 1002, Tunis, Tunisia.