Analytical Modeling and Design of Generalized Pneu-Net Soft Actuators with Three-Dimensional Deformations.

Journal: Soft robotics
PMID:

Abstract

Pneu-net soft actuators, consisting of pneumatic networks of small chambers embedded in elastomeric structures, are particularly promising candidates in the society of soft robotics. However, there are few studies on the analytical modeling of pneu-net soft actuators, especially in the three-dimensional space. In this article, based on the minimum potential energy method and the continuum rod theory, we propose an analytical model and corresponding design approach for a class of generalized pneu-net soft actuators (gPNSAs) with both bending and twisting deformations by combining the geometric complexity and material elasticity. We experimentally verify our modeling approach and finally investigate the effects of geometric parameters, material properties, and external force on the deformations of gPNSAs, which can be used as a tool for the design of gPNSAs. We further demonstrate that our developed model can predict the deformations of gPNSAs made of multiple materials.

Authors

  • Guoying Gu
    State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University; Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University; guguoying@sjtu.edu.cn.
  • Dong Wang
    Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
  • Lisen Ge
    State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University; Robotics Institute, School of Mechanical Engineering, Shanghai Jiao Tong University.
  • Xiangyang Zhu