Difficulty-aware hierarchical convolutional neural networks for deformable registration of brain MR images.

Journal: Medical image analysis
Published Date:

Abstract

The aim of deformable brain image registration is to align anatomical structures, which can potentially vary with large and complex deformations. Anatomical structures vary in size and shape, requiring the registration algorithm to estimate deformation fields at various degrees of complexity. Here, we present a difficulty-aware model based on an attention mechanism to automatically identify hard-to-register regions, allowing better estimation of large complex deformations. The difficulty-aware model is incorporated into a cascaded neural network consisting of three sub-networks to fully leverage both global and local contextual information for effective registration. The first sub-network is trained at the image level to predict a coarse-scale deformation field, which is then used for initializing the subsequent sub-network. The next two sub-networks progressively optimize at the patch level with different resolutions to predict a fine-scale deformation field. Embedding difficulty-aware learning into the hierarchical neural network allows harder patches to be identified in the deeper sub-networks at higher resolutions for refining the deformation field. Experiments conducted on four public datasets validate that our method achieves promising registration accuracy with better preservation of topology, compared with state-of-the-art registration methods.

Authors

  • Yunzhi Huang
    Department of Biomedical Engineering, College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China.
  • Sahar Ahmad
  • Jingfan Fan
    Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
  • Dinggang Shen
    School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.
  • Pew-Thian Yap
    Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.