Self-evoluting framework of deep convolutional neural network for multilocus protein subcellular localization.

Journal: Medical & biological engineering & computing
Published Date:

Abstract

In the present paper, deep convolutional neural network (DCNN) is applied to multilocus protein subcellular localization as it is more suitable for multi-class classification. There are two main problems with this application. First, the appropriate features for correlation between multiple sites are hard to find. Second, the classifier structure is difficult to determine as it is greatly affected by the distribution of classified data. To solve these problems, a self-evoluting framework using DCNNs for multilocus protein subcellular localization is proposed. It has three characteristics that the previous algorithms do not. The first is that it combines the ant colony algorithm with the DCNN to form a self-evoluting algorithm for multilocus protein subcellular localization. The second is that it randomly groups subcellular sites using a limited random k-labelsets multi-label classification method. It also solves complex problems in a divide-and-conquer approach and proposes a flexible expansion model. The third is that it realizes the random selection feature extraction method in the positioning process and avoids the defects in individual feature extraction methods. The algorithm in the present paper is tested on the human database, and the overall correct rate is 67.17%, which is higher than that for the stacked self-encoder (SAE), support vector machine (SVM), random forest classifier (RF), or single deep convolutional neural network.Graphical abstract The algorithm mentioned in the present paper mainly includes four parts. They are protein sequence data preprocessing, integrated DCNN model construction, finding optimal DCNN combination by ant colony optimization, and protein subcellular localization for sequences. These parts are sequential relationships and the data obtained in the previous part is the basis for the latter part of the function. In the part of data preprocessing, the limited RAkEL multi-label classification method is used to randomly group subcellular sites. At the same time, the feature fusion of protein sequences is carried out by using multiple feature extraction methods. Each combination including features and sites information corresponds to a DCNN model. In the part of finding optimal DCNN combination by ant colony optimization, the main purpose is to find the best combination of DCNN models through the global optimization ability of the ant colony algorithm. The positioning of sequences is mainly to obtain multilocus subcellular localization by the optimal model combination.

Authors

  • Hanhan Cong
    School of Information Science and Engineering, Shandong Normal University, No. 88, Wenhua East Road, Jinan City, China.
  • Hong Liu
    Key Laboratory of Grain and Oil Processing and Food Safety of Sichuan Province, College of Food and Bioengineering, Xihua University Chengdu 610039 China xingyage1@163.com.
  • Yuehui Chen
    Shandong Provincial Key Laboratory of Network based Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan, China.
  • Yi Cao
    Department of Dermatology, First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.