Split-slice training and hyperparameter tuning of RAKI networks for simultaneous multi-slice reconstruction.
Journal:
Magnetic resonance in medicine
Published Date:
Dec 16, 2020
Abstract
PURPOSE: Simultaneous multi-slice acquisitions are essential for modern neuroimaging research, enabling high temporal resolution functional and high-resolution q-space sampling diffusion acquisitions. Recently, deep learning reconstruction techniques have been introduced for unaliasing these accelerated acquisitions, and robust artificial-neural-networks for k-space interpolation (RAKI) have shown promising capabilities. This study systematically examines the impacts of hyperparameter selections for RAKI networks, and introduces a novel technique for training data generation which is analogous to the split-slice formalism used in slice-GRAPPA.