Pitfalls in training and validation of deep learning systems.

Journal: Best practice & research. Clinical gastroenterology
PMID:

Abstract

The number of publications in endoscopic journals that present deep learning applications has risen tremendously over the past years. Deep learning has shown great promise for automated detection, diagnosis and quality improvement in endoscopy. However, the interdisciplinary nature of these works has undoubtedly made it more difficult to estimate their value and applicability. In this review, the pitfalls and common misconducts when training and validating deep learning systems are discussed and some practical guidelines are proposed that should be taken into account when acquiring data and handling it to ensure an unbiased system that will generalize for application in routine clinical practice. Finally, some considerations are presented to ensure correct validation and comparison of AI systems.

Authors

  • Tom Eelbode
    Department of Electrical Engineering (ESAT/PSI), KU Leuven, Kasteelpark Arenberg 10/2446, 3001, Leuven, Belgium; Medical Imaging Research Center (MIRC), UZ Leuven, Herestraat 49, 3000, Leuven, Belgium. Electronic address: tom.eelbode@kuleuven.be.
  • Pieter Sinonquel
    Department of Gastroenterology and Hepatology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium; Department of Translational Research in Gastrointestinal Diseases (TARGID), Catholic University Leuven, Herestraat 49, 3000, Leuven, Belgium. Electronic address: pieter.sinonquel@uzleuven.be.
  • Frederik Maes
    Department of Electrical Engineering (ESAT/PSI), KU Leuven, Kasteelpark Arenberg 10/2446, 3001, Leuven, Belgium; Medical Imaging Research Center (MIRC), UZ Leuven, Herestraat 49, 3000, Leuven, Belgium. Electronic address: frederik.maes@kuleuven.be.
  • Raf Bisschops
    Department of Gastroenterology and Hepatology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium; Department of Translational Research in Gastrointestinal Diseases (TARGID), Catholic University Leuven, Herestraat 49, 3000, Leuven, Belgium. Electronic address: raf.bisschops@uzleuven.be.