Spatially-Aware Context Neural Networks.

Journal: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Published Date:

Abstract

A variety of computer vision tasks benefit significantly from increasingly powerful deep convolutional neural networks. However, the inherently local property of convolution operations prevents most existing models from capturing long-range feature interactions for improved performances. In this paper, we propose a novel module, called Spatially-Aware Context (SAC) block, to learn spatially-aware contexts by capturing multi-mode global contextual semantics for sophisticated long-range dependencies modeling. We enable customized non-local feature interactions for each spatial position through re-weighted global context fusion in a non-normalized way. SAC is very lightweight and can be easily plugged into popular backbone models. Extensive experiments on COCO, ImageNet, and HICO-DET benchmarks show that our SAC block achieves significant performance improvements over existing baseline architectures while with a negligible computational burden increase. The results also demonstrate the exceptional effectiveness and scalability of the proposed approach on capturing long-range dependencies for object detection, segmentation, and image classification, outperforming a bank of state-of-the-art attention blocks.

Authors

  • Dongsheng Ruan
  • Yu Shi
    NIH BD2K Program Centers of Excellence for Big Data Computing-KnowEng Center, Department of Computer Science, University of Illinois at Urbana-Champaign , Champaign, Illinois.
  • Jun Wen
    School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
  • Nenggan Zheng
    Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China.
  • Min Zheng