Hybrid LSTM Self-Attention Mechanism Model for Forecasting the Reform of Scientific Research in Morocco.

Journal: Computational intelligence and neuroscience
Published Date:

Abstract

Education is the cultivation of people to promote and guarantee the development of society. Education reforms can play a vital role in the development of a country. However, it is crucial to continually monitor the educational model's performance by forecasting the outcome's progress. Machine learning-based models are currently a hot topic in improving the forecasting research area. Forecasting models can help to analyse the impact of future outcomes by showing yearly trends. For this study, we developed a hybrid, forecasting time-series model by long short-term memory (LSTM) network and self-attention mechanism (SAM) to monitor Morocco's educational reform. We analysed six universities' performance and provided a prediction model to evaluate the best-performing university's performance after implementing the latest reform, i.e., from 2015-2030. We forecasted the six universities' research outcomes and tested our proposed methodology's accuracy against other time-series models. Results show that our model performs better for predicting research outcomes. The percentage increase in university performance after nine years is discussed to help predict the best-performing university. Our proposed algorithm accuracy and performance are better than other algorithms like LSTM and RNN.

Authors

  • Asmaa Fahim
    College of Economics & Management, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China.
  • Qingmei Tan
    College of Economics & Management, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China.
  • Mouna Mazzi
    Mohammed V University, Rabat, Morocco.
  • Md Sahabuddin
    College of Economics & Management, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China.
  • Bushra Naz
    Department of Computer Systems Engineering, Mehran University of Engineering and Technology, Jamshoro, Kotri, Sindh 76062, Pakistan.
  • Sibghat Ullah Bazai
    Department of Computer Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Balochistan 87300, Pakistan.