Hybrid Pyramid Convolutional Network for Multiscale Face Detection.

Journal: Computational intelligence and neuroscience
PMID:

Abstract

Face detection remains a challenging problem due to the high variability of scale and occlusion despite the strong representational power of deep convolutional neural networks and their implicit robustness. To handle hard face detection under extreme circumstances especially tiny faces detection, in this paper, we proposed a multiscale Hybrid Pyramid Convolutional Network (HPCNet), which is a one-stage fully convolutional network. Our HPCNet consists of three newly presented modules: firstly, we designed the Hybrid Dilated Convolution (HDC) module to replace the fully connected layers in VGG16, which enlarges receptive field and reduces its loss of local information; secondly, we constructed the Hybrid Feature Pyramid (HFP) to combine semantic information from higher layers together with details from lower layers; and thirdly, to deal with the problem of occlusion and blurring effectively, we introduced Context Information Extractor (CIE) in HPCNet. In addition, we presented an improved Online Hard Example Mining (OHEM) strategy, which can enhance the average precision of face detection by balancing the number of positive and negative samples. Our method has achieved an accuracy of 0.933, 0.924, and 0.848 on the Easy, Medium, and Hard subset of WIDER FACE, respectively, which surpasses most of the advanced algorithms.

Authors

  • Shaoqi Hou
    School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China.
  • Dongdong Fang
    School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China.
  • Yixi Pan
    Glasgow College, University of Electronic Science and Technology of China, Chengdu, China.
  • Ye Li
    Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Haikou 571010, People's Republic of China; Key Laboratory of Monitoring and Control of Tropical Agricultural and Forest Invasive Alien Pests, Ministry of Agriculture, Haikou 571010, People's Republic of China.
  • Guangqiang Yin
    School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, China.