Machine-learning a virus assembly fitness landscape.

Journal: PloS one
Published Date:

Abstract

Realistic evolutionary fitness landscapes are notoriously difficult to construct. A recent cutting-edge model of virus assembly consists of a dodecahedral capsid with 12 corresponding packaging signals in three affinity bands. This whole genome/phenotype space consisting of 312 genomes has been explored via computationally expensive stochastic assembly models, giving a fitness landscape in terms of the assembly efficiency. Using latest machine-learning techniques by establishing a neural network, we show that the intensive computation can be short-circuited in a matter of minutes to astounding accuracy.

Authors

  • Pierre-Philippe Dechant
    School of Science, Technology & Health, York St John University, York, United Kingdom.
  • Yang-Hui He
    Department of Mathematics, City, University of London, London, United Kingdom.