VolumeNet: A Lightweight Parallel Network for Super-Resolution of MR and CT Volumetric Data.

Journal: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Published Date:

Abstract

Deep learning-based super-resolution (SR) techniques have generally achieved excellent performance in the computer vision field. Recently, it has been proven that three-dimensional (3D) SR for medical volumetric data delivers better visual results than conventional two-dimensional (2D) processing. However, deepening and widening 3D networks increases training difficulty significantly due to the large number of parameters and small number of training samples. Thus, we propose a 3D convolutional neural network (CNN) for SR of magnetic resonance (MR) and computer tomography (CT) volumetric data called ParallelNet using parallel connections. We construct a parallel connection structure based on the group convolution and feature aggregation to build a 3D CNN that is as wide as possible with a few parameters. As a result, the model thoroughly learns more feature maps with larger receptive fields. In addition, to further improve accuracy, we present an efficient version of ParallelNet (called VolumeNet), which reduces the number of parameters and deepens ParallelNet using a proposed lightweight building block module called the Queue module. Unlike most lightweight CNNs based on depthwise convolutions, the Queue module is primarily constructed using separable 2D cross-channel convolutions. As a result, the number of network parameters and computational complexity can be reduced significantly while maintaining accuracy due to full channel fusion. Experimental results demonstrate that the proposed VolumeNet significantly reduces the number of model parameters and achieves high precision results compared to state-of-the-art methods in tasks of brain MR image SR, abdomen CT image SR, and reconstruction of super-resolution 7T-like images from their 3T counterparts.

Authors

  • Yinhao Li
  • Yutaro Iwamoto
  • Lanfen Lin
    State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310027, China.
  • Rui Xu
    Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
  • Ruofeng Tong
    State Key Lab of CAD & CG, Zhejiang University, Hangzhou, 310027, China.
  • Yen-Wei Chen